skip to main content


Search for: All records

Creators/Authors contains: "Tress, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Recent findings that the association bond lifetimes τ α* in associating polymers diverge from their supramolecular network relaxation times τ c challenge past theories. The bond lifetime renormalization proposed by Rubinstein and coworkers [Stukalin et al. , Macromolecules , 2013, 46 , 7525] provides a promising explanation. To examine systematically its applicability, we employ shear rheology and dielectric spectroscopy to study telechelic associating polymers with different main chain (polypropylene glycol and polydimethylsiloxane), molecular weight (below entanglement molecular weight) and end groups (amide, and carboxylic acid) which form dimeric associations by hydrogen bonding. The separation between τ c (probed by rheology) and τ α* (probed by dielectric spectroscopy) strongly increases with chain length as qualitatively predicted by the model. However, to describe the increase quantitatively, a transition from Rouse to reptation dynamics must be assumed. This suggests that dynamics of super-chains must be considered to properly describe the transient network. 
    more » « less